
silabs.com | Building a more connected world. Copyright © 2024 by Silicon Laboratories Rev. 0.3

UG295: Silicon Labs Bluetooth® Mesh
C Application Developer’s Guide for
SDK v2.x and Higher

This document is an essential reference for anyone developing
C-based applications for Silicon Labs Wireless Gecko products
using the Silicon Labs Bluetooth Mesh stack. This is a
companion to UG434: Silicon Labs Bluetooth C Application
Developers Guide for SDK v3.x and Higher and contains content
specific to mesh application development. The guide covers both
Bluetooth mesh stack architecture, application development
flow, use and limitations of the MCU core and peripherals, stack
configuration options, and the stack’s resource usage. This
version applies to the Silicon Labs Bluetooth Mesh SDK version
2.x and higher.

The purpose of the document is to capture and fill in the blanks between the Bluetooth
Mesh Stack API reference, Gecko SDK API reference, and Wireless Gecko reference
manuals, when developing Bluetooth mesh applications for the Wireless Geckos. This
document exposes details that will help developers make the most out of the available
hardware resources.

KEY POINTS

• Bluetooth mesh stack and chip configu-
ration

• Interaction with the Bluetooth LE stack
• Event and sleep management
• Resource usage and availability
• Radio State Monitoring

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Table of Contents

silabs.com | Building a more connected world. Rev. 0.3 | 1

Table of Contents

1 Introduction ... 1
1.1 About This Version ... 1
1.2 Prerequisites... 1

2 Application Development Flow ... 2
2.1 Application Build Flow .. 3
2.2 Bluetooth Mesh API documentation ... 3
2.3 Bluetooth Mesh Application Build Flow ... 4

3 Project Structure ... 6
3.1 Bluetooth Mesh Library Files .. 6

3.1.1 Stack .. 7
3.1.2 Node ... 8
3.1.3 Provisioner .. 10
3.1.4 GATT Database .. 11
3.1.5 Bluetooth Mesh Device Composition Data ... 12
3.1.6 RTOS Support .. 12

4 Bluetooth Mesh Stack Event Handling ... 13
4.1 Bluetooth LE versus Bluetooth Mesh Event ... 13

5 NVM Layout .. 14
6 Bluetooth Mesh Features ... 15

6.1 Proxy .. 15
6.2 Relay .. 15
6.3 Friend ... 15
6.4 Low Power Node .. 16

7 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources ... 18
7.1 Wireless Gecko MCU and Peripherals Configuration ... 18
7.2 Wireless Gecko Resources .. 18

7.2.1 Internal Flash and SRAM.. 19
7.2.2 Monitoring Radio RX and TX State Using PRS (Peripheral Reflex System)... 19

8 Documentation ... 22

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Introduction

silabs.com | Building a more connected world. Rev. 0.3 | 1

1 Introduction

This document is a C developer’s guide for the Silicon Labs Bluetooth Mesh stack. It covers various aspects of development and is an
important reference for anyone developing in C for Wireless Gecko products that are running the Bluetooth stack.

The document covers the following topics:
• Section 2 Application Development Flow discusses the application development flow.
• Section 3 Project Structure reviews project structure.
• Section 4 Bluetooth Mesh Stack Event Handling is an important piece for everyone developing with the Silicon Labs Bluetooth stack,

as it explains how the application runs in sync with the stack in an event-based architecture.
• Section 5 NVM Layout describes memory allocation for Bluetooth LE and mesh.
• Section 6 Bluetooth Mesh Features reviews functionality provided by Bluetooth mesh features.
• Section 7 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources touches on the topics of peripherals and the

chipset resources, covers what is reserved for the stack usage, how interrupts should be handled, and the stack’s memory footprint
and available memory for the application. It also covers radio TX/RX monitoring.

1.1 About This Version

The current version of Silicon Labs' Bluetooth Mesh SDK is 2.1.x. Currently supported compilers and IDE version are:
• IDE: Simplicity Studio 5.0.0 or newer.
• Compiler: IAR v8.50.9 and GCC 10.2.0.

1.2 Prerequisites

This document assumes the current version of Silicon Labs’ Bluetooth SDK has been properly installed to the development machine
(Windows, MAC OSX, or Linux), and that you are familiar with the https://docs.silabs.com/btmesh/latest/btmesh-getting-started-overview/
and with the SDK’s examples. Also, you should have a basic understanding of Bluetooth technology. For more information, see UG103.14:
Bluetooth Technology Fundamentals.

https://docs.silabs.com/btmesh/latest/btmesh-getting-started-overview/

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Application Development Flow

silabs.com | Building a more connected world. Rev. 0.3 | 2

2 Application Development Flow

The following figure describes the high-level firmware structure. The developer creates an application on top of the stack, which Silicon
Labs provides as a precompiled object-file, enabling the Bluetooth mesh connectivity for the end-device. The application for Bluetooth
Mesh has typically been running on bare metal, but starting from Simplicity SDK 2024.12 there has been OS support with selected RTOS
examples for FreeRTOS and Micrium OS.

Figure 2.1. Firmware Architecture

The Bluetooth mesh stack contains the following blocks.
• Bootloader—The Gecko Bootloader is not part of the stack but is provided with the Bluetooth SDK. See UG266: Silicon Labs Gecko

Bootloader User's Guide for GSDK 3.2 and Lower, UG489: Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher,
and AN1086: Using the Gecko Bootloader with Silicon Labs Bluetooth Applications for more information. For information on bootload-
ing in general, see UG103.06: Bootloading Fundamentals.

• Bluetooth stack—Bluetooth functionality consisting of link layer, generic access profile, security manager, attribute protocol, and
generic attribute profile.

• Bluetooth AppLoader—An application that starts after the bootloader. It checks if the user application is valid and, if it is, starts the
application. If the application image is not valid or DFU mode is requested, AppLoader starts the Bluetooth Low Energy OTA process
to try to receive an application image. This requires using the Gecko Bootloader.

• Bluetooth Mesh Stack -The Bluetooth mesh functionality consisting of the network layer, lower and upper transport layer, and access
layer. Models are also provided as part of the stack.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Application Development Flow

silabs.com | Building a more connected world. Rev. 0.3 | 3

2.1 Application Build Flow

Figure 2.2. Bluetooth Mesh Project Build Flow

Building a Bluetooth mesh project starts by selecting the right base project that is to be generated and adding any extra required compo-
nents. Models and elements can be added to the project using the Bluetooth Mesh Configurator. If the GATT bearer is used, the Bluetooth
mesh services and characteristics can be viewed just like any other GATT services and characteristics in the Bluetooth GATT Configu-
rator. For more information on the Bluetooth GATT Configurator and Bluetooth application development, see https://docs.silabs.com/blue-
tooth/latest/bluetooth-getting-started-overview/.

Compiling the project generates an object file, which is then linked with the pre-compiled libraries provided in the SDK. The output of the
linking is a flash image that can be programmed to the supported Wireless Gecko devices.

2.2 Bluetooth Mesh API documentation

The Bluetooth Mesh API documentation can be found in HTML format along with all Application Notes and User Guide pdf files in the
following default installation directory:

SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<version>\app\bluetooth\documentation

https://docs.silabs.com/bluetooth/latest/bluetooth-getting-started-overview/
https://docs.silabs.com/bluetooth/latest/bluetooth-getting-started-overview/

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Application Development Flow

silabs.com | Building a more connected world. Rev. 0.3 | 4

The API reference is under API_BLUETOOTH_MESH_HTML.

Figure 2.3. Bluetooth Mesh API Reference

2.3 Bluetooth Mesh Application Build Flow

Following the Simplicity Studio v5 software approach, the Bluetooth mesh stack is configured using components. Typically, items such
as models, stack parameters, and features can be tuned through the software components menu. All component dependencies are
handled internally by Simplicity Studio. Components and models can be configured, added, or removed.

Figure 2.4. Bluetooth Mesh Configurable Component

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Application Development Flow

silabs.com | Building a more connected world. Rev. 0.3 | 5

Installing a model is shown in the following figure.

Figure 2.5. Bluetooth Mesh Model Installation

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 6

3 Project Structure

This section explains the application project structure and the mandatory and optional resources available in the project.

A Bluetooth mesh project is a collection of C source and header files that is built using makefiles. The Simplicity Studio 5 installation
generates build files and either generates, copies, or links all SDK or component source files, based on the selection made during project
creating. After a project is created, the following directories are created:
• The config directory - This directory is autogenerated and aggregates the component configuration files. Files are all headers and

contain macros that are specific to each component. The UI tools used to generate the GATT database as well as the DCD for
Bluetooth mesh are in this directory.

• The autogen directory – This directory aggregates the C code generated by Simplicity Studio and the SDK. It is a mix of header and
source files that constitute the skeleton of the project. Silicon Labs recommends that you do not edit the files in this directory, as they
will be overwritten the next time files are generated.

• The gecko_sdk_3.x directory – This directory copies or links to the SDK resources. Only sources that are relevant to your project and
how it is configured are copied or linked.

• The GNU ARM Vxyz – Debug/Release directory – This is the build directory when the GCC compiler is used.

Application code is implemented at the root of the project in app.c/h and main.c. The following table shows the typical layout of a project:

Figure 3.1. Bluetooth Mesh Project Directories

3.1 Bluetooth Mesh Library Files

The Bluetooth stack libraries are:
• binapploader.o: Binary image of the Bluetooth AppLoader for Series 1, provides the optional Bluetooth LE Over-the-Air (OTA) func-

tionality.
• binapploader_nvm3.o: Binary image of the Bluetooth AppLoader for Series 1 with NVM3 support.
• libbluetooth.a: Bluetooth stack library.
• libnvm3_CMxx_gcc.a: NVM3 functionality for Bluetooth LE and Bluetooth mesh stacks. NVM3 is the unique memory management

system used for non-volatile memory. For more information how to use NVM3, see AN1135: Using Third Generation Non-Volatile
Memory (NVM3) Data Storage.

• libbluetooth_mesh.a: This library includes the radio driver layer and the Bluetooth LE stack, with the Bluetooth mesh stack built on
top of it.

RAIL (Radio Application Interface Layer). The Bluetooth LE and mesh stacks use RAIL to access the radio. RAIL libraries are linked
to the Bluetooth mesh stack under libbluetooth_mesh.a. RAIL has separate libraries for each device family and for single- and multi-
protocol environments. RAIL libraries are provided in the Gecko Platform. For more information refer to UG103.13: RAIL Fundamentals
and other RAIL documentation.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 7

EMLIB and EMDRV. The Bluetooth LE and mesh stacks use EMLIB and EMDRV libraries to access EFR32 hardware. EMLIB and
EMDRV peripheral libraries are provided in source code and they must be included in the project. EMLIB and EMDRV are part of the
Gecko Platform. For more details on EMLIB and EMDRV, refer to the Gecko Bootloader API reference in <Simplicity Studio Gecko
SDK>\platform\bootloader\documentation\Gecko_Bootloader_API_Reference\index.html, along with the documentation in their respec-
tive folders under <Simplicity Studio Gecko SDK>\platform\.

mbedTLS. The mbedTLS security library is a C library that implements cryptographic primitives, X.509 certificate manipulation and the
SSL/TLS and DTLS protocols. Its small code footprint makes it suitable for embedded systems.

Among other header files generated by the SDK, the following defines the APIs for both the Bluetooth mesh and LE stack. These files
serve two purposes: first they contain the actual Bluetooth LE and mesh stack API and the commands and events for the stack, and
second they provide configuration, event, and sleep management API to the Bluetooth LE and mesh stack.

sl_btmesh_api.h. This file is part of the SDK directory and defines the Bluetooth mesh API available to the user. It contains all routine
definitions as well as types, structures and event definitions needed in order to write a Bluetooth mesh application.

sl_bt_api.h. This file is part of the SDK directory and defines the API available to the user. It contains all routine definitions as well as
types, structures and event definitions needed in order to write a Bluetooth LE application.

Note that an application may use both APIs if the developer wished to use both Bluetooth LE and mesh in the project.

3.1.1 Stack

The Bluetooth mesh stack initialization is autogenerated and takes place in sl_btmesh.c under the autogen directory. Sequentially, in the
user application code, a system init function sl_system_init() is called in main.c. This function is defined in the generated file
sl_system_init.c. The stack is then initialized from there.

void sl_system_init(void)
{
 sl_platform_init();
 sl_driver_init();
 sl_service_init();
 sl_stack_init();
 sl_internal_app_init();
}

The sl_stack_init() function initializes the radio transmitter/receiver and makes the call to both the Bluetooth LE and mesh stack
initialization functions (sl_event_handler.c).

void sl_stack_init(void)
{
 sl_rail_util_pa_init();
 sl_rail_util_pti_init();
 sl_bt_init();
 sl_btmesh_init();
}

Additionally, the default Bluetooth LE stack configuration structure and macros can be found under the config directory, in the sl_blue-
tooth_config.h file. The content of that file is generated by the SDK via the Bluetooth LE and mesh components. For more information on
how to configure the Bluetooth mesh stack, refer to UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for
SDK v2.x.

static sl_bt_configuration_t config = SL_BT_CONFIG_DEFAULT;
sl_status_t err = sl_bt_init_stack(&config);

This function takes a single argument - a pointer to a sl_bt_configuration_t struct. Its purpose is to configure and initialize the Bluetooth
stack with the parameters provided in the struct. More information on the sl_bt_init_stack() routine is available in the HTML API docu-
mentation.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 8

3.1.2 Node

A device configured as a node in a Bluetooth mesh network is initialized by the sl_btmesh_node_init() routine. The call to that
function is usually present in the Bluetooth mesh user application state machine (switch/case statements) in the app.c file:

sl_status_t sl_btmesh_node_init();

Each node can be configured in various ways. Some nodes may support a set of models and features that other nodes are not meant to
support. This is specific to the user and the network.

In order to make a model or feature functional, make sure the corresponding initialization class routine are called. For example, if a node
supports the same generic server and/or client models (On/Off, Level, and so on), follow this procedure.
1. Make sure that the corresponding model components are installed in your project. When a component is installed, a blue check

symbols appears in front of it. If the component is configurable, a Configure control (gear symbol) is available next to the component
name, and as a button in the top right corner.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 9

2. Make sure the models are properly added to your DCD configuration. If the model is not supported as a component, it has to be
manually added to the corresponding element using the Bluetooth Mesh Configurator.

3. Make sure the corresponding Bluetooth mesh classes are properly initialized.

/** @brief Table of used BGAPI classes */
static const struct sli_bgapi_class * const btmesh_class_table[] =
{
 SL_BTMESH_BGAPI_CLASS(health_server),
 SL_BTMESH_BGAPI_CLASS(proxy),
 SL_BTMESH_BGAPI_CLASS(proxy_server),
 SL_BTMESH_BGAPI_CLASS(node),
 SL_BTMESH_BGAPI_CLASS(generic_server),
 NULL
};

Note: This section only describes the common pitfalls that a user might encounter when setting up a node using generic client/server as
an illustration. It is not an exhaustive list of steps that are necessary to have a generic On/Off or Battery client/server up and running,
which would require a much longer description.

In the case of a generic On/Off server model for example, the following steps would need to be implemented on the server:
• Register a generic server handler.

static void init_models(void)
{
 mesh_lib_generic_server_register_handler(MESH_GENERIC_ON_OFF_SERVER_MODEL_ID,
 BTMESH_GENERIC_ONOFF_SERVER_MAIN,
 onoff_request,
 onoff_change,
 onoff_recall);
}

• Populate the corresponding request/change/recall functions.

static void onoff_request(uint16_t model_id,
 uint16_t element_index,
 uint16_t element_index,
 uint16_t client_addr,
 uint16_t server_addr,
 uint16_t appkey_index,
 const struct mesh_generic_request *request,
 uint32_t transition_ms,
 uint16_t delay_ms,
 uint8_t request_flags)

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 10

static void onoff_change(uint16_t model_id,
 uint16_t element_index,
 const struct mesh_generic_state *current,
 const struct mesh_generic_state *target,
 uint32_t remaining_ms)

static void onoff_recall(uint16_t model_id,
 uint16_t element_index,
 const struct mesh_generic_state *current,
 const struct mesh_generic_state *target,
 uint32_t transition_ms)

Note that this is only an example based on the generic On/Off model. It is commonly more difficult to start from scratch with generic
models as it would require a very good understanding of both the Bluetooth mesh technology and the stack.

In order to set up a working node configured as a light client/server model, Silicon Labs recommends using the sample application in
Simplicity Studio. For more information, refer to AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstra-
tion.

3.1.3 Provisioner

To configure a device as a provisioner, first install the Provisioner component.

A provisioner must support the configuration client model. As a result the corresponding models should be added in the Bluetooth Mesh
Configurator. Check that the configuration client model is part of the Bluetooth mesh init class table, generated by the SDK, in the
sl_btmesh.c file:

static const struct sli_bgapi_class * const btmesh_class_table[] =
{
…
SL_BTMESH_BGAPI_CLASS(config_client),
NULL
};

This should also now be visible in the Bluetooth Mesh Configurator user interface.

Additionally, configure the Bluetooth Mesh Stack component so that the following parameters are set to values corresponding to your
network:
• Maximum number of provisioned devices allowed.
• Maximum number of App keys allowed for each Provisioned device.
• Maximum number of Net keys allowed for each Provisioned device.

These three are required for successful provisioning in any network size, and may be enough for a very small network consisting of one
or two nodes. In more complicated networks, provisioner configuration depends on many other parameters. For more information on
Bluetooth mesh stack parameters, refer to UG472: Bluetooth® Mesh Stack and Bluetooth® Mesh Configurator User's Guide for SDK
v2.x.

The following table shows an example. Note that the parameters are set to 4 as an example, not as a recommendation.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 11

Figure 3.2. Bluetooth Mesh Stack Component - Provisioner Settings

The Provisioner is initialized using the following routine. The call to that function is usually present in the Bluetooth mesh user application
state machine (switch/case statement) in the app.c file:

sl_status_t sl_btmesh_prov_init();

No Bluetooth mesh API routine can be called before this one. Additionally, the node-initializing routine sl_btmesh_node_init()
must not be called on a provisioner.

3.1.4 GATT Database

The GATT (Generic Attribute Profile) database is a standardized way of describing a Bluetooth device’s profiles, services, and charac-
teristics. With the Silicon Labs Bluetooth stack, the GATT definitions are either directly edited in the Bluetooth GATT Configurator in
Simplicity Studio or are written in XML. For more information on how to create GATT databases and the syntax, refer to UG118: Blue
Gecko Bluetooth® Smart Profile Toolkit Developer's Guide.

gatt_db.c and gatt_db.h

The gatt_db.c file defines the GATT database structure and content. It is autogenerated by the Bluetooth GATT configurator. gatt_db.h
includes this database and the handles of local characteristics and services. Type definitions of GATT are automatically included from
gatt_db_def.h to gatt_db.h. In the case of Bluetooth mesh, only the Bluetooth mesh services are relevant:
• Mesh Proxy service (UUID 0x1828): The Bluetooth mesh Proxy Service is used to enable a server to send and receive Proxy PDUs

with a proxy client .
• Mesh Proxy Data In (UUID 0x2ADD)
• Mesh Proxy Data Out (UUID 0x2ADE)

• Mesh Provisioning service (UUID 0x1827): The Bluetooth mesh Provisioning Service allows a Provisioning Client to provision a Pro-
visioning server to allow it to participate in the Bluetooth mesh network.
• Mesh Provisioning Data In (UUID 0x2ADB)
• Mesh Provisioning Data Out (UUID 0x2ADC)

Those services and characteristics can be thought of as duplex communication channels for provisioning and proxy PDUs. The "data in"
and "out" characteristics are then the Tx and Rx channel, respectively.

A device may support the Bluetooth mesh Provisioning Service or the Mesh Proxy Service or both. If both are supported, only one of
these services should be exposed in the GATT database at a time.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Project Structure

silabs.com | Building a more connected world. Rev. 0.3 | 12

3.1.5 Bluetooth Mesh Device Composition Data

The device composition data, or DCD, is a set of data indicating which features are supported, how many elements are present on a
node with their description, and a set of identifiers defining the model layout across the elements of the node.

The Composition Data state contains information about a node, the elements it includes, and the supported models. The Composition
Data is composed of a number of pages of information. Composition Data Page 0 is mandatory. All other pages are optional. All Compo-
sition Data Pages not defined in this specification are reserved for future use. The size of the state must not exceed the maximum useful
access payload size.

The following code snippet illustrate how this is defined for the Bluetooth mesh stack:

const uint8_t __mesh_dcd[] = {
 U16TOA(0x02ff), /* Company ID */
 U16TOA(0xf0b0), /* Product ID */
 U16TOA(0x1234), /* Version Number */
 U16TOA(SL_BTMESH_CONFIG_RPL_SIZE), /* Capacity of Replay Protection List */
 U16TOA(SL_BTMESH_FEATURE_BITMASK), /* Features Bitmask */
 /* Main */
 U16TOA(0x0000), /* Location */
 0x04, /* Number of SIG Models = 4 */
 0x00, /* Number of Vendor Models = 0 */
 /* SIG Models */
 U16TOA(0x0000), /* Configuration Server */
 U16TOA(0x0002), /* Health Server */
 U16TOA(0x0001), /* Configuration Client */
 U16TOA(0x0003), /* Health Client */
};

const uint8_t *__mesh_dcd_ptr = __mesh_dcd;

The structure called __mesh_dcd is passed via a pointer to the C Bluetooth mesh library.

After provisioning, the Provisioner typically retrieves the DCD of the newly provisioned node in order to determine the node’s features
and functionalities so that it can be configured to operate in the network.

3.1.6 RTOS Support

Typical Bluetooth Mesh examples have been running on bare metal. RTOS support has been available for the Bluetooth Mesh starting
from Simplicity SDK 2024.12. There are selected examples also running on FreeRTOS and Micrium OS.

Note that multiprotocol applications are not supported by the Bluetooth mesh protocol.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Stack Event Handling

silabs.com | Building a more connected world. Rev. 0.3 | 13

4 Bluetooth Mesh Stack Event Handling

The Bluetooth mesh stack for the Wireless Geckos is an event-driven architecture, where events are handled in the main while loop. The
Bluetooth mesh stack runs on top of the Silicon Labs Bluetooth stack.

4.1 Bluetooth LE versus Bluetooth Mesh Event

The Bluetooth mesh protocol is built on top of Bluetooth Low Energy. This mean that a device running a Bluetooth LE stack will be able
to receive a Bluetooth mesh PDU but will not be able to interpret the data that it contains. Nevertheless, a node or device can run both.
In effect, it is possible to have Bluetooth LE and Bluetooth mesh events treated separately in an application.

In this particular case, Bluetooth LE and Bluetooth mesh event application state machines need to be separate. In other words, the
Bluetooth LE and Bluetooth mesh events cannot be treated in a unique switch-case statement.

At the application level, the Silicon Labs Bluetooth Mesh API provides a way to differentiate Bluetooth mesh events from Bluetooth LE
events. This is done through the Bluetooth mesh listener.

The Bluetooth mesh events in the stack are handled similarly to the regular Bluetooth LE events. In a freshly created project, the Bluetooth
mesh switch case statement is performed by the routine sl_btmesh_step() and sl_btmesh_process_event().

For more information on how events are processed in both the Bluetooth LE and mesh stacks, refer to the ‘Bluetooth Stack Event Han-
dling’ section in UG434: Silicon Labs Bluetooth C Application Developer’s Guide for SDK v3.x.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 NVM Layout

silabs.com | Building a more connected world. Rev. 0.3 | 14

5 NVM Layout

The non-volatile memory management system, called non-volatile memory 3 (NVM3), is a data storage driver for storing persistent data
primarily, but not only, in internal flash. The term "non-volatile" and "NVM3" are synonymous in this section.

AN1135: Using Third Generation Non Volatile Memory Data Storage describes in detail how NVM3 operates. The NVM3 subsystem
allocates a certain range of address to both the user and the Bluetooth LE and Bluetooth mesh stacks, among other things. The following
table shows what key ranges are dedicated to the stack and the user:

Domain NVM3 Key Range
User 0x00000 - 0x0FFFF
Bluetooth stack 0x40000 - 0x4FFFF

The Bluetooth stack key range is shared between regular Bluetooth Low Energy and Bluetooth mesh. Within this key range, the distribu-
tion is laid out as follow:

Domain NVM3 Key Range
Bluetooth internal stack data (bonding, etc.) 0x40000 - 0x40FFF
Bluetooth mesh stack data 0x41000 - 0x44000
Reserved for future use 0x48000 - 0x4FFFF

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Features

silabs.com | Building a more connected world. Rev. 0.3 | 15

6 Bluetooth Mesh Features

Optional networking or energy features may also be implemented in a Bluetooth mesh application. The Bluetooth mesh profile specifica-
tion refers to those simply as features. There are four Bluetooth mesh features: Proxy, Relay, Friends, and Low Power nodes. This section
describes all four.

Note: These features are specific to nodes, that is, devices in a Bluetooth mesh network. The provisioner of a network is not subject to
features support.

6.1 Proxy

The Proxy feature allows a node to receive and transmit Bluetooth mesh messages between GATT and advertising bearers. The proxy
feature is used to forward Network packets received by a node between GATT bearer and advertising bearers. This feature is optional
and can be enabled/disabled at runtime. When this feature is enabled, the corresponding GATT Proxy service must be exposed.

The proxy feature defines two roles, the proxy client and the server. The proxy server is a node that supports both the GATT bearer and
the advertising bearer. In practice, the proxy client is a node that supports only the GATT bearer.

For a proxy feature to run, the corresponding proxy routine class must be part of the stack initialization table. The following code snippet
gives a proxy server example.

static const struct sli_bgapi_class * const btmesh_class_table[] =
{
 SL_BTMESH_BGAPI_CLASS(health_server),
 SL_BTMESH_BGAPI_CLASS(proxy),
 SL_BTMESH_BGAPI_CLASS(proxy_server),
 SL_BTMESH_BGAPI_CLASS(node),
 NULL
};

6.2 Relay

The Relay feature allows a node to receive and retransmit Bluetooth mesh messages over the advertising bearer to enable larger net-
works.

The provisioner can enable the relay feature on a particular node (if supported) via the following routine:

sl_status_t sl_btmesh_config_client_set_relay(uint16_t enc_netkey_index,
 uint16_t node_address,
 uint8_t value,
 uint8_t retransmit_count,
 uint16_t retransmit_interval_ms,
 uint32_t * handle)

A getter function is also available. For more details, refer to the Bluetooth Mesh Configuration Client section of the API html documenta-
tion.

Note: In large networks, it is in general a good practice to limit the number of nodes supporting the relay feature. Otherwise, the data
traffic can increase very rapidly to undesired levels.

6.3 Friend

The Friend feature allows a node to help a node supporting the Low Power feature to operate by storing messages destined for that node.
Friendship is used by Low Power Nodes to limit the amount of time that they need to listen.

The application code for nodes supporting that feature need to enable it using:
• sl_status_t sl_btmesh_friend_init(void) for enabling the feature.

• sl_status_t sl_btmesh_friend_deinit(void) for disabling the feature.

For more information, refer to the HTML API Reference delivered with the SDK.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Features

silabs.com | Building a more connected world. Rev. 0.3 | 16

6.4 Low Power Node

The Low Power Node (LPN) feature allows a node to operate within a Bluetooth mesh network at significantly reduced receiver duty
cycles, only in conjunction with a node supporting the Friend feature.

Similarly to the Friend feature, the application code for nodes supporting the Low Power Node feature needs to enable it:

• sl_status_t sl_btmesh_lpn_init(void)

• sl_status_t sl_btmesh_lpn_deinit(void)

When the feature has been enabled on a node, and if a node offering friendship is within radio range, the friendship can be established
and terminated using the following routines with the associated network key index:

• sl_status_t sl_btmesh_lpn_establish_friendship(uint16_t netkey_index)

• sl_status_t sl_btmesh_lpn_terminate_friendship(uint16_t netkey_index)

The Silicon Labs Bluetooth Mesh API allows the user to configure the time interval at which the LPN will poll the friend as well as other
time variables:

• sl_status_t sl_status_t sl_btmesh_lpn_config(uint8_t setting_id, uint32_t value)

The following arrays describes the setting id enum used by the stack to aggregates the LPN configuration values (enum
sl_btmesh_lpn_settings_t):

sl_btmesh_lpn_queue_length (0x00)
Minimum queue length the friend must support in bytes. The
value is rounded up to the nearest power of 2. Default is 2.
Range is 2..128.

sl_btmesh_lpn_poll_timeout (0x01)

Poll timeout in milliseconds, which is the longest time that LPN
sleeps in between querying its friend for queued messages.
Default is 50 ms. The value is rounded to the nearest multiple
of 100 ms. The range is 1 s to 95 h 59 min 59 s 900 ms.

sl_btmesh_lpn_receive_delay (0x02)

Receive delay in milliseconds. Receive delay is the time
between the LPN sending a request and listening for a
response. Receive delay allows the friend node time to prepare
the message and the LPN to sleep. Range: 10 ms to 255 ms.
The default receive delay is 10 ms. The default value is 10.

sl_btmesh_lpn_request_retries (0x03)

Request retry is the number of retry attempts to repeat, for
example, how many times to repeat the friend poll message if
the friend update was not received by the LPN. Range is from
0 to 10. The default value is 6 (initial attempt plus 5 retries).

sl_btmesh_lpn_retry_interval (0x04) Time interval between retry attempts in milliseconds. Range is
0 to 100 ms. The default value is 100 ms.

Additionally, a friend poll request can be sent from the LPN at any time using the flowing routine with the appropriate network key index:

sl_status_t sl_btmesh_lpn_poll(uint16_t netkey_index)

However, it is not required for correct operation, because the procedure will be performed automatically before the poll timeout expires.

For more information on the friend and LPN API, refer to the HTML API documentation.

sl_btmesh_dcd.c

From a practical standpoint, the device composition data of each node contains a 2-byte field indicating the supported features. The
following array illustrates the features field:

Bit Feature Notes

0 Relay Relay feature supported if set to 1. 0
otherwise.

1 Proxy Proxy feature supported if set to 1. 0
otherwise.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Features

silabs.com | Building a more connected world. Rev. 0.3 | 17

Bit Feature Notes

2 Friend Friend feature supported if set to 1. 0
otherwise.

3 Low Power Node (LPN) LPN feature supported if set to 1. 0
otherwise.

4 - 15 Reserved for future use. Reserved for future use.

As mentioned in section 3.1.5 Bluetooth Mesh Device Composition Data, each node, after provisioning, sends its composition data page
0 to the provisioner. In the code example presented in that section, the macro SL_BTMESH_FEATURE_BITMASK is used with the default
value of 3:

#define SL_BTMESH_FEATURE_BITMASK 3

In this example, that macro enables the relay and proxy features (3) in the Bluetooth mesh stack. This is the default setting.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources

silabs.com | Building a more connected world. Rev. 0.3 | 18

7 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources

To run the Bluetooth stack and an application on a Wireless Gecko, the MCU and its peripherals have to be properly configured. Once
the hardware is initialized, the stack also has to be initialized using the sl_btmesh_init() function as described in section 3.1.1
Stack. This process is automated by the SDK.

sl_system_init()

The sl_system_init() function is used to initialize the system. It will call platform, driver, service, stack, and internal app init func-
tions, located in the autogen folder.

app_init()

This function is used to initialize application-specific features.

7.1 Wireless Gecko MCU and Peripherals Configuration

When the configuration is relevant to Bluetooth mesh, the information is the same as provided in the ‘Wireless Gecko MCU and Periph-
erals Configuration’ section of UG434: Silicon Labs Bluetooth C Application Developer’s Guide for SDK v3.x. The following table follows
the order in that document and provides cross-references where appropriate.

Configuration Bluetooth mesh Reference

Adaptive Frequency Hopping

Not supported when using the advertising
bearer, as all data traffic uses on the
primary advertising channels. If the GATT
bearer is used, Bluetooth mesh data are
sent and received via the Proxy protocol,
which uses a Bluetooth Low Energy
connection with dedicated Bluetooth mesh
services.

Mesh profile specification

Bluetooth Clocks Supported. UG434, ‘Bluetooth Clocks’
DC-DC Configuration Supported. UG434, ‘DC-DC Configuration’
LNA Supported. UG434, ‘LNA’

Periodic Advertising
Not supported. Legacy advertising (31
bytes long) only, as per the profile
specification.

PTI Supported. UG434, ‘PTI’
Transmit Power Supported. UG434, ‘Transmit Power’
Filter Accept List Supported. UG434, ‘Accept List Filtering’
Wi-Fi Coexistence Supported. UG434, ‘Wi-Fi Coexistence’
OTA Configuration Supported using Bluetooth LE services. UG434, ‘OTA Configuration’
Even Connection Distribution Algorithm Not supported.
Interrupts Supported UG434, ‘Interrupts’

7.2 Wireless Gecko Resources

The Bluetooth mesh stack uses some of the Wireless Gecko’s resources, which are not available to the application. The following table
lists the resources and describes their use by the stack. The first four resources are always used by the Bluetooth stack.

Category Resource Used in software Notes

PRS PRS7 PROTIMER RTC
synchronization

PRS7 always used by the
Bluetooth stack.

Timers RTCC EM2 The sleep timer uses RTCC in
the default configuration.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources

silabs.com | Building a more connected world. Rev. 0.3 | 19

Category Resource Used in software Notes

“ PROTIMER Bluetooth (LE and mesh) The application does not have
access to PROTIMER.

Radio RADIO Bluetooth
Always used and all radio
registers are reserved for the
Bluetooth LE and mesh stack.

GPIO NCP Host communication Up to 4 I/O pin. Optional.
“ PTI Packet trace 2 to N I/O pins. Optional.
“ TX ACTIVE TX activity indication 1 I/O pin. Optional.
“ RX ACTIVE RX activity indication 1 I/O pin. Optional.
“ COEX PTA Wi-Fi Coexistence Up to 4 I/O pins. Optional.

CRC GPCRC NVM3

Can be used in application, but
application should always
reconfigure GPCRC before
use, and GPCRC clock must
not be disabled in CMU.

Flash MSC NVM3 Can be used by the
application.

Crypto CRYPTO Bluetooth Link encryption

The CRYPTO peripheral can
only be accessed through the
mbedTLS crypto library, not
through any other means. The
library should be able to do the
scheduling between the stack
and application access.

“ RADIO AES Bluetooth Link encryption The application does not have
access to RADIOAES

7.2.1 Internal Flash and SRAM

For more information, refer to the Wireless Gecko Resources section in UG434: Silicon Labs Bluetooth C Application Developer’s Guide
for SDK v3.x.

7.2.2 Monitoring Radio RX and TX State Using PRS (Peripheral Reflex System)

It is sometimes useful, for debugging purposes, to monitor the state of the radio transmitter/receiver. This can be done by outputting on
pins the RX_ACTIVE and TX_ACTIVE signals. An example is provided here on how to do that on series 2 devices (EFR32xG21-based
Wireless Gecko starter kit).

First, make sure the PRS component is installed in the project. Then the following code example indicates how PRS can be used to
output the RX_ACTIVE and TX_ACTIVE signals.

Note: As indicated in the table in section 7.2 Wireless Gecko Resources, PRS channel 7 is used by the Bluetooth LE stack and cannot
be used in this example.

#include "em_prs.h"
#include "em_cmu.h"

/* Enable TX_ACT signal through GPIO PD03 */
#define _PRS_CH_CTRL_SOURCESEL_RAC2 0x00000031UL
#define PRS_CH_CTRL_SOURCESEL_RAC2 (_PRS_CH_CTRL_SOURCESEL_RAC2 << 8)
#define _PRS_CH_CTRL_SIGSEL_RACRX 0x00000003UL
#define PRS_CH_CTRL_SIGSEL_RACRX (_PRS_CH_CTRL_SIGSEL_RACRX << 0)
#define _PRS_CH_CTRL_SIGSEL_RACTX 0x00000004UL
#define PRS_CH_CTRL_SIGSEL_RACTX (_PRS_CH_CTRL_SIGSEL_RACTX << 0)

/* RACPAEN Enable (TX_ACT) signal through GPIO PD03 */
#define TX_ACTIVE_PRS_SOURCE PRS_CH_CTRL_SOURCESEL_RAC2
#define TX_ACTIVE_PRS_SIGNAL PRS_CH_CTRL_SIGSEL_RACTX

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources

silabs.com | Building a more connected world. Rev. 0.3 | 20

#define TX_ACTIVE_PRS_CHANNEL 10
#define TX_ACTIVE_PRS_PORT gpioPortD
#define TX_ACTIVE_PRS_PIN 3

/* Enable RX_ACT signal through GPIO PD02 */
#define RX_ACTIVE_PRS_SOURCE PRS_CH_CTRL_SOURCESEL_RAC2
#define RX_ACTIVE_PRS_SIGNAL PRS_CH_CTRL_SIGSEL_RACRX
#define RX_ACTIVE_PRS_CHANNEL 11
#define RX_ACTIVE_PRS_PORT gpioPortD
#define RX_ACTIVE_PRS_PIN 2

This snippet of codes defines which PRS signals coming from the radio source (RAC, 0x31 on xG21) should be used. Those signals will
then be routed to the desired pins, in this case PD3 for the TX_ACTIVE signal and PD2 for the RX_ACTIVE signal.

Then the following functions set up the pins and configure the PRS module:

static void initGpio(void)
{
 // Set RX/TX active pins
 GPIO_PinModeSet(TX_ACTIVE_PRS_PORT, TX_ACTIVE_PRS_PIN, gpioModePushPull, 0);
 GPIO_PinModeSet(RX_ACTIVE_PRS_PORT, RX_ACTIVE_PRS_PIN, gpioModePushPull, 0);

 /* Set up GPIO clock */
 CMU_ClockEnable(cmuClock_GPIO,true);
}

static void initPrs(void)
{
 /* Enable PRS clock */
 CMU_ClockEnable(cmuClock_PRS, true);

 /* Use RAC, PAEN as PRS source */
 PRS_SourceAsyncSignalSet(TX_ACTIVE_PRS_CHANNEL, PRS_RAC_PAEN, PRS_RAC_PAEN);

 /* Use RAC, RX_ACT as PRS source */
 PRS_SourceAsyncSignalSet(RX_ACTIVE_PRS_CHANNEL, PRS_RAC_RX, PRS_RAC_RX);

 /* Route output to PC01. No extra PRS logic needed here. */
 PRS_PinOutput(TX_ACTIVE_PRS_CHANNEL,prsTypeAsync, TX_ACTIVE_PRS_PORT , TX_ACTIVE_PRS_PIN);
 PRS_PinOutput(RX_ACTIVE_PRS_CHANNEL,prsTypeAsync, RX_ACTIVE_PRS_PORT , RX_ACTIVE_PRS_PIN);
}

The initGpio() routine sets the previously-defined pins as output and enables the GPIO clock. The initPrs() routine enables
the PRS module clock, sets the asynchronous channels, and routes the signals to the pins.

The two functions need to be called in the user application code as such:

SL_WEAK void app_init(void)
{
 /* Set up GPIOs */
 initGpio();

 /* Set up PRS */
 initPrs();
}

The radio state can then be monitored using the defined pins on a logic analyzer. In this example, the radio is running a simple Bluetooth
LE advertisement example. On each of the three primary advertising channels, data is first transmitted (long logic high) then the radio
switches to the receive state (short logic high), which is repeated on each channel.

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources

silabs.com | Building a more connected world. Rev. 0.3 | 21

Figure 7.1. Radio State Monitored (Bluetooth LE Advertisement)

Figure 7.2 Radio State Monitored (Zoomed)

 UG295: Silicon Labs Bluetooth Mesh C Developer's Guide for SDK v2.
 Documentation

silabs.com | Building a more connected world. Rev. 0.3 | 22

8 Documentation

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless
tools, documentation, software,
source code libraries & more. Available
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are
trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

	1 Introduction
	1.1 About This Version
	1.2 Prerequisites

	2 Application Development Flow
	2.1 Application Build Flow
	2.2 Bluetooth Mesh API documentation
	2.3 Bluetooth Mesh Application Build Flow

	3 Project Structure
	3.1 Bluetooth Mesh Library Files

	4 Bluetooth Mesh Stack Event Handling
	4.1 Bluetooth LE versus Bluetooth Mesh Event

	5 NVM Layout
	6 Bluetooth Mesh Features
	6.1 Proxy
	6.2 Relay
	6.3 Friend
	6.4 Low Power Node

	7 Bluetooth Mesh Stacks and Wireless Gecko Configuration and Resources
	7.1 Wireless Gecko MCU and Peripherals Configuration
	7.2 Wireless Gecko Resources

	8 Documentation

