
 

 

silabs.com | Building a more connected world. Copyright © 2025 by Silicon Laboratories Rev. 0.4 

AN1299: Understanding the Silicon Labs 
Bluetooth® Mesh SDK v6.x or Higher  
Lighting Demonstration 

This version of AN1299 has been deprecated with the release 
of Simplicity SDK Suite 2024.12.2. For the latest version, see 
docs.silabs.com. 
*************************************************************************************************** 

The Bluetooth mesh SDK comes with example projects that 
creates a wireless network of lights and switches using Bluetooth 
mesh technology. This document assumes the usage of Silicon 
Labs WSTKs for switches and lights and an Android or iOS mobile phone for provisioning and 
controlling the network. In this document, we discuss the basics of Bluetooth mesh required to 
understand the example, and walk through key aspects of the application source code.  

This document assumes you have read QSG183: Bluetooth® Mesh SDK QuickStart Guide 
for SDK v4.x and Higher, installed the Bluetooth mesh SDK, and successfully run the ex-
amples.  

 

 
Bluetooth LE and Mesh Stacks and Supported Topologies  

KEY FEATURES 

• Short introduction to Bluetooth mesh 
• Light and Switch examples - application 

description and code walkthrough 
• Silicon Labs Bluetooth mesh mobile appli-

cation 

https://docs.silabs.com/btmesh/latest/btmesh-sdk6-or-higher-lighting-demo/
https://www.silabs.com/documents/public/quick-start-guides/qsg183-bluetooth-mesh-sdk-4x-quick-start-guide.pdf
https://www.silabs.com/documents/public/quick-start-guides/qsg183-bluetooth-mesh-sdk-4x-quick-start-guide.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Introduction 

 

silabs.com | Building a more connected world. Rev. 0.4  | 2 

1 Introduction 

This document explains the Bluetooth mesh lighting demo, installed as part of the Bluetooth mesh SDK. Most of the documentation 
focuses on the example application and its usage flow, explaining key parts of the source code and the Silicon Labs Bluetooth Mesh 
mobile application. This document also introduces some concepts of the specification that are important for understanding the example.  

There are different light sources with different capabilities. If a light source is a tuneable white, the CTL Model can control its light intensity, 
color temperature and Delta UV. The SoC Light CTL example, which demonstrates these types of light sources, is described in this 
document. There are also color-changing lights, where the HSL Model can control the Hue, Saturation, and Lightness to describe the 
quality of the light. Although the SoC Light HSL example demonstrates these types of light sources, this example is out of scope for this 
document. There is also a BT Mesh Lighting standard, called Networked Lighting Control (NLC), which defines profiles for the various 
roles in the lighting network. Each of these profiles are also demonstrated by NLC examples. These examples are not in scope for this 
document but are described in AN1438: Networked Lighting Control. In this document, BT Mesh SoC Light CTL nodes will be referred to 
as light nodes, and BT Mesh SoC Switch CTL Nodes will be referred to as switch nodes. 

The following subsections briefly go through the relevant aspects of the Bluetooth mesh technology. Section 2 Bluetooth Mesh Lighting 
Demonstration describes the features and functions of the Lighting Demonstration, section 3 Network Analyzer describes using Network 
Analyzer for packet capture, and section 4 Bluetooth Mesh Stack and Application for Smartphones focuses on the mobile application.  

1.1 Bluetooth Mesh 

Bluetooth mesh is a networking technology available for Bluetooth LE devices and applications. Previously Bluetooth devices have been 
using point-to-point connectivity or broadcasting topologies to communicate with other devices. Bluetooth mesh extends that and allows 
both many-to-many device communications and using Bluetooth devices in a mesh topology. This enables multi-hop communications 
between Bluetooth devices and much larger-scale Bluetooth device networks than has previously been possible.  

Bluetooth mesh uses Bluetooth LE advertising channels to send and receive messages between the Bluetooth mesh nodes, but it can 
also use Bluetooth connections and GATT services to communicate with devices that do not natively support Bluetooth mesh. 

Bluetooth mesh also uses its own security architecture, which is separate from the normal Bluetooth LE security architecture, although 
the same AES-CCM 128-bit and Elliptic Curve Diffie Hellman (ECDH) security algorithms are used. 

Bluetooth mesh also defines its own application layer called mesh model which is different than the GATT-based profiles and services 
that non-mesh Bluetooth LE devices use. The new application layer was defined to address the requirements and needs of mesh-based 
topologies and also to make Bluetooth mesh a full stack solution and enable interoperable mesh devices to be built. 

1.1.1 Bluetooth Mesh Network Roles and Node Features 

The Bluetooth mesh network typically consists of multiple nodes. All nodes can transmit and receive mesh messages, but they can 
optionally also support one or more additional features. If a node does not implement any of the additional features, it is considered just 
a node. Various node types are illustrated in the following figure.  

https://www.silabs.com/documents/public/application-notes/an1438-network-lighting-control.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Introduction 

 

silabs.com | Building a more connected world. Rev. 0.4  | 3 

 
Figure 1-1: Node Types 

The four types of specified node features are as follows:   

Proxy feature: Enables message proxy between Bluetooth mesh and GATT, and enables devices such as smartphones to connect to 
Bluetooth mesh. 

Relay feature: Relays messages to extend the range and scale of a Bluetooth mesh network. 

Friend feature: Implements an additional message cache to support nodes with the low power feature. 

Low power feature: Allows sleeping and polling of messages from friend nodes at known time intervals. 

For further information on these features and Bluetooth mesh technology, please go to the Silicon Labs Bluetooth mesh learning center. 

1.1.2 Provisioning  

Provisioning refers to the operation where devices that are not part of any Bluetooth mesh network are transformed into nodes that are 
part of one or more Bluetooth mesh networks. For example, provisioning happens when a new light bulb is installed and taken into use, 
so it can be controlled by switches or dimmers. 

Provisioning is mainly a security process where the first level security keys are generated by the provisioner and transferred to the device 
that is being provisioned to make it part of a Bluetooth mesh network. 

The provisioning process begins when a device starts to send unprovisioned Bluetooth beacon packets and the provisioner receives 
them. The provisioner then initiates the provisioning process, the devices exchange public keys, and both generate session keys. The 
session keys are used to secure the session, in the transfer of the actual network key, and the rest of the provisioning process. After 
provisioning, each device, now a node in the network, has the network key, a security parameter called the IV index, and its unicast 
address. 

1.1.3 Publish and Subscribe 

In Bluetooth mesh, communication to a group of devices is typically implemented through a publish and subscribe mechanism. This is an 
easy-to-understand concept which also simplifies the setup of Bluetooth mesh networks and adding and reconfiguring nodes. 

Usually the Bluetooth mesh nodes are configured into groups, which may represent their physical location (kitchen or living room) or 
specific function (lights or window coverings). Usually the devices are also controlled as groups, so the same message is sent to all 
devices in a group. To accomplish this functionality, Bluetooth mesh uses a concept called publish – subscribe, where nodes, such as 
lights, subscribe to messages groups and nodes, like switches, publish messages to those groups. At the network layer, each group is 
assigned a group address, and multicast messaging is used to send the messages to all devices in a specific group. 

https://www.silabs.com/wireless/bluetooth/bluetooth-mesh


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Introduction 

 

silabs.com | Building a more connected world. Rev. 0.4  | 4 

 
Figure 1-2: Publish and Subscribe 

The benefit of publish and subscribe is that, when a new node is added or an existing node is removed or replaced, only that node needs 
to be provisioned and configured. 



 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 5 

2 Bluetooth Mesh Lighting Demonstration 

2.1 Requirements 

• Simplicity Studio 
• Bluetooth Mesh SDK 6.0.0 or later, distributed through Simplicity Studio 5. 
• The pre-built demo binaries and source code are included in the SDK. 
• Simplicity Studio has a Network Analyzer capable of capturing and decoding Bluetooth mesh packets. 
• The actual code development can be done with Simplicity Studio, IAR EWARM, or command line tools. 

• Silicon Labs Bluetooth mesh mobile application  
• Available for both iOS and Android. 
• Used for discovering and provisioning devices over GATT. 
• Includes network, group, and publish-subscribe setup. 
• Allows device configuration and control. 
• Requires iOS 14 or later (https://apps.apple.com/us/app/bluetooth-mesh-by-silicon-labs/id1411352948). 
• Requires Android 11 (API30) or later (https://play.google.com/store/apps/details?id=com.siliconlabs.bluetoothmesh&hl=en). 

• For the full experience, at least three Silicon Labs Blue Gecko SoC Wireless Starter Kits are needed. 
• 2 kits are used as lights with proxy feature. 
• 1 kit is used as a switch. 
• EFR32xG27, EFR32xG24, EFR32xG21, and EFR32xG22 SoCs as well as the BGM220P and BGM220S modules support 

Bluetooth mesh software. Note that EFR32xG22, BGM220P, and BGM220S only support limited Bluetooth mesh features. 

See QSG183: Bluetooth® Mesh SDK QuickStart Guide for SDK v4.x and Higher for more information on obtaining required hardware 
and software, and running the demonstration. 

The demonstration setup can, in principle, consist of any number of switch nodes and light nodes. A single switch node can control an 
arbitrary number of light nodes by sending commands to a group address. Similarly, a light node can receive on/off commands from 
multiple switches. 

2.2 Mesh Network Implementation 

The demonstration implementation process can be divided into four main phases as follows: 
1. Unprovisioned mode – After the demo firmware is installed, the device starts in unprovisioned mode. 
2. Provisioning – The devices are provisioned to a Bluetooth mesh network and network security is set up. 
3. Configuration – The group, publish and subscribe, and application security are configured. 
4. Normal operation – The light node(s) can be controlled by the switch node(s) and the smartphone application. 

In the first phase, all the devices are unprovisioned and transmitting unprovisioned beacons. They do not have any network keys or 
application keys configured, and publish and subscribe settings are not set. In this state, the devices are simply waiting for the provisioner 
to assign them into a Bluetooth mesh network and to configure publish and subscribe and mesh models. In this state, the devices can be 
detected by the smartphone application. 

In the provisioning phase, the provisioner adds lights and switches to the Bluetooth mesh network. A network key is generated and 
distributed to the nodes, and each node is assigned a unicast address.  

In the configuration phase, the provisioner configures groups, publish and subscribe settings, application-level security, and mesh models. 

After provisioning and configuration, the Bluetooth mesh network is operational, and switches can be used to control the lights. The WSTK 
switch’s buttons can be used to control all the lights in a group. The same functionality can be done with the smartphone application, and 
it can also control individual lights using unicast addressing. 
  

https://www.silabs.com/developers/simplicity-studio
https://www.silabs.com/developers/bluetooth-mesh-mobile-app
https://apps.apple.com/us/app/bluetooth-mesh-by-silicon-labs/id1411352948
https://play.google.com/store/apps/details?id=com.siliconlabs.bluetoothmesh&hl=en
https://www.silabs.com/development-tools/wireless/efr32xg21-wireless-starter-kit?tab=overview
https://www.silabs.com/documents/public/quick-start-guides/qsg183-bluetooth-mesh-sdk-4x-quick-start-guide.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 6 

2.3 Code Walkthrough 

The Bluetooth mesh SDK includes light and switch example projects, named Bluetooth Mesh – SoC Light CTL and Bluetooth Mesh – 
SoC Switch CTL. Both examples are implemented using the same event-driven architecture that is used in plain Bluetooth (non-mesh) 
applications.  

For information about Bluetooth C application development, see UG434: Silicon Labs Bluetooth ® C Application Developer's Guide for 
SDK v7.x and Higher. 

2.3.1 Unprovisioned Mode, Provisioning, and Configuration 

In unprovisioned mode, both light and switch examples behave the same way. The unprovisioned device simply starts sending unprovi-
sioned beacons and waits for a provisioner to provision and configure it. 

When the app_init is called, the application checks if a button is pressed in the handle_reset_conditions function. If yes, -
depending on the pressed button(s)- it calls either the function sl_btmesh_initiate_full_reset(), which halts the system and 
performs a factory reset by erasing the NVM3 storage, or the function sl_btmesh_initiate_node_reset(), which does the same, 
except full NVM storage erasure. The factory reset is also done after receiving a node_reset event (sl_btmesh_evt_node_re-
set_id). This is handled within the Factory Reset component. If no button is pressed, then the name of the device is set based on the 
Bluetooth address, within the function sl_btmesh_provisionee_on_init(), when it is called to signal the initialization of the Blue-
tooth mesh node stack.  

The callback sl_btmesh_provisionee_on_init() indicates that the Bluetooth mesh node stack initialization is complete. In the 
background, the sl_btmesh_evt_node_initialized_id is handled within the Provisionee component. The application first checks 
the provisioning status. If the node is not provisioned (the default state when the device is first powered up after programming), then the 
application starts unprovisioned beaconing by calling sl_btmesh_node_start_unprov_beaconing(). 

The API sl_btmesh_node_start_unprov_beaconing takes one parameter (bearer) that selects which bearers are used (PB-ADV, 
PB-GATT, or both). In this example, both bearers are used. Because the PB-GATT bearer is enabled, the device will begin advertising 
its provisioning GATT service. This allows the smartphone application to detect unprovisioned nodes. 

When unprovisioned beaconing has been started, the application waits for the provisioner (in this case, the smartphone app) to start 
provisioning. The start of provisioning is indicated with the event sl_btmesh_evt_node_provisioning_started_id. When this 
event is raised, the callback function sl_btmesh_on_node_provisioning_started() is called. 

During provisioning, no actions are required from the user application. The Bluetooth mesh stack automatically handles network key 
configuration and other operations. Both the light and the switch application simply start blinking the two LEDs on the WSTK to indicate 
that provisioning is in progress. Then they wait for the event sl_btmesh_evt_node_provisioned_id that indicates provisioning is 
complete. When this event is raised, the callback function sl_btmesh_on_node_provisioned() is called. 

https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf
https://www.silabs.com/documents/public/user-guides/ug434-bluetooth-c-soc-dev-guide-sdk-v3x.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 7 

 
Figure 2-1: Initialization of the Application 

The next step after provisioning is configuration of the node. As explained in QSG183: Bluetooth® Mesh SDK QuickStart Guide for SDK 
v4.x and Higher, the smartphone app is used to configure a node either as a switch or a light and assign it to a group. The configuration 
procedure consists of following steps: 
• Provisioner distributes an application key to the node. 
• The application key is bound to the selected Bluetooth mesh model. 
• Publish address and settings are configured. 
• Subscribe address and settings are configured. 

The configuration phase is mostly handled between the Bluetooth mesh stack and the provisioner and it does not require any involvement 
from the user application in the node. The following events are generated by the stack to give status information about the ongoing 
configuration: 

https://www.silabs.com/documents/public/quick-start-guides/qsg183-bluetooth-mesh-sdk-4x-quick-start-guide.pdf
https://www.silabs.com/documents/public/quick-start-guides/qsg183-bluetooth-mesh-sdk-4x-quick-start-guide.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 8 

• sl_btmesh_evt_node_key_added_id: generated when the provisioner has sent a new key (network or application) 
• sl_btmesh_evt_node_model_config_changed_id: indicates that the provisioner has modified configuration of the local model 

(either publish or subscribe settings changed) 

Up to this point, the code in the examples Bluetooth Mesh – SoC Light CTL and Bluetooth Mesh – SoC Switch CTL is almost identical. 

2.3.2 Switch Node Example 

This section describes basic operation of the Bluetooth Mesh – SoC Switch CTL example. It is assumed that the node is already 
provisioned and publish - subscribe settings have been configured by the smartphone app. The switch node has one simple task: listen 
for push-button presses and -based on the button press length- control the brightness, color temperature, or on/off state of the lights in 
the group. Short button presses (less than 250 ms) are used to adjust light brightness up (PB1) and down (PB0). Medium button presses 
(more than 250 ms and less than 1 s) are used to adjust light color temperature up (PB1) and down (PB0). A long press (more than 1 s 
and less than 5 s) or a very long press (more than 5 s) recalls the previous light lightness (PB1) or turns the light off (PB0). 

The on/off control, the brightness control and the color temperature control uses the Light CTL Client model. The switch example also 
demonstrates the Low Power Node (LPN) feature. When the switch is provisioned into the network, it will start looking for a friend so 
that it can enter low-power mode. When a friendship is established, the switch can go to deep sleep, and it will wake up periodically to 
poll the friend node for any incoming messages. 

Upon receiving the sl_btmesh_evt_node_initialized_id event, the Generic Client Models, the Lightness Client, the CTL Client 
components, and the mesh library are initialized. The Low Power Node (LPN) feature is then initialized and configured. After the LPN 
feature is initialized, the callback function sl_btmesh_lpn_on_init() is called and the application displays “LPN on” on the WSTK 
LCD. The LPN configuration has five parameters: lpn_queue_length, lpn_poll_timeout, lpn_receive_delay, lpn_re-
quest_retries, and lpn_retry_interval. The settings of these parameters are defined in sl_btmesh_lpn_config.h as  
SL_BTMESH_LPN_MIN_QUEUE_LENGTH_CFG_VAL, SL_BTMESH_LPN_POLL_TIMEOUT_CFG_VAL, 
SL_BTMESH_LPN_RECEIVE_DELAY_CFG_VAL, SL_BTMESH_LPN_REQUEST_RETRIES_CFG_VAL, and 
SL_BTMESH_LPN_RETRY_INTERVAL_CFG_VAL, respectively. After that, the node starts finding a friend node. The LPN feature status 
is displayed on the WSTK LCD display. 

The LPN feature is mostly implemented in the mesh stack, so only a few informative events can be raised to the application through 
corresponding callback functions: 
• sl_btmesh_lpn_on_friendship_established: A friendship was successfully established. The application displays “LPN with 

friend” on the WSTK LCD. 
• sl_btmesh_lpn_on_friendship_failed: The Friendship establishment failed. The application displays “No friend” on the WSTK 

LCD, and the node tries to establish a friendship again in 2 seconds. 
• sl_btmesh_lpn_on_friendship_terminated: The friendship was terminated for some reason. The application displays “Friend 

lost” on the WSTK LCD, and the node tries to establish a friendship again in 2 seconds. 

If a GATT connection is opened, the friendship is terminated and the LPN is de-initialized. In this case, the callback function 
sl_btmesh_lpn_on_deinit() is called, and the application displays “LPN off” on the WSTK LCD. After all GATT connections are 
closed, the LPN feature is re-initialized. 

The sl_btmesh_ctl_client_set_lightness() function (used in the example) changes the lightness level and sends its value to 
the server for short button presses. Short presses are used to adjust light brightness up and down. The application sends a request using 
the Light CTL Client model. The last level that has been set is stored in a variable (type uint16), and the level is adjusted up or down 
each time a short button press is detected. Sending a single request is implemented in send_ctl_request(), detailed below. 

A similar function (but just for lightness) is sl_btmesh_set_lightness(). Here, sending a single light lightness request is imple-
mented in function send_lightness_request(), which is very similar to the send_onoff_request() that can be used for on/off 
requests. All of these use the same API mesh_lib_generic_client_publish() to publish the request. The differences are in the 
model ID that is passed as argument and the parameter data type.  

The sl_btmesh_ctl_client_set_temperature() function changes the color temperature and sends its value to the server for 
medium button presses. Medium presses are used to adjust light color temperature up and down. The application sends a request using 
the Light CTL Client model. The last temperature that has been set is stored in a variable (type uint16), and the temperature is adjusted 
up or down each time a medium button press is detected. 

Sending a single light CTL request is implemented in function send_ctl_request(), which is very similar to send_lightness_re-
quest() that can be used for light brightness requests. Both of these use the same API mesh_lib_generic_client_publish() to 
publish the request. The differences are in the model ID that is passed as argument and the parameter data type. 



 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 9 

Sending a single on/off request is implemented in the function send_onoff_request(). A soft timer is used to trigger three calls to 
send_onoff_request() with a 50 ms delay between each call. In the example, the on-off functionality is implemented with the help of 
the sl_btmesh_ctl_client_set_lightness() function. 

The mesh stack API used to send one on/off transaction is mesh_lib_generic_client_publish(). This is a common API used to 
publish data for several client models. It is not limited to the generic on/off client only. For example, publishing data as a generic transition 
time client would be done using the same API. The first parameter model_id selects which model is being used. 

In addition to the desired on/off status, the publish API has some additional parameters such as transaction identifier, transition time, 
and delay. 

The transaction identifier is a running number that is incremented for each transaction. In this example, each on/off state change triggers 
three consecutive on/off requests. The transaction identifier is the same for each of these requests so that, at the receiving end, duplicate 
requests can be filtered out. In other words, all three published messages are part of the same transaction, and they will trigger only one 
event at the receiving light node. 

The delay parameter can be used to indicate that the on/off transition should not be executed immediately but after a given delay. In this 
example, the delay parameter is set to values of 100 ms / 50 ms / 0 in the first, second, and third request, respectively. The purpose is to 
ensure that all lights in the target group change their state simultaneously, regardless of which of the three on/off requests was captured 
on the receiving side. 

The application code that implements the light switch functionality is relatively simple because many aspects are automatically handled 
by the mesh stack. For example, the switch node does not need to know anything about the light nodes that it is controlling. Any number 
of light nodes can be subscribed to the ctl requests that are published by the switch node.  

The switch node does not need to know the group address that has been configured by the provisioning application. It simply publishes 
the ctl requests using the API mesh_lib_generic_client_publish(), and the stack automatically sends the requests using the 
group address that has been configured by the provisioner. 

2.3.3 Light Node Example 

This section describes basic operation of the Bluetooth Mesh – SoC Light CTL example. It is assumed that the node is already provi-
sioned and that the publish and subscribe settings have been configured by the smartphone app. 

The main feature of the light node is that the development kit LEDs are turned on or off based on the requests that are received from 
switch nodes or from the smartphone application. The brightness of the LEDs can also be controlled. The On/off control is based on the 
Bluetooth mesh Generic OnOff model, and the brightness control is based on the Light Lightness model. The Light CTL model supports 
color temperature requests, as well as lightness. Color temperature changes are shown on the WSTK LCD display. The light node also 
supports the friend feature. It can establish a friendship with a low-power switch node in the network so that the switch node can enter 
low-power mode. 

The light node supports the following states: 
• Generic OnOff 
• Generic Level 
• Generic OnPowerUp 
• Generic Default Transition Time 
• Light Lightness 
• Light CTL 



 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 10 

Upon receiving the sl_btmesh_evt_node_initialized_id event, the Generic Server, the Lightness Server, the CTL Server, and 
the mesh library are initialized. The mesh library is an adaptation layer between the mesh stack and the application code that enables 
using multiple models with a small set of generic API calls. 

To support all the states listed above, the light node must store its internal state permanently so that it is preserved over reboots and 
power cycles. The Lighting Server holds Generic and Light Lightness states in the lightbulb_state struct. The Light CTL Server holds 
Light CTL states in the lightbulb_state struct as well. The state information is also held in the stack. 

The light state initialization is implemented in sl_btmesh_lighting_server_init() and sl_btmesh_ctl_server_init(). The 
onpowerup state enables configuration of the default state after power is applied to the light node. The possible settings are listed below. 

 
onpowerup state Description (light node) 
MESH_GENERIC_ON_POWER_UP_STATE_OFF Light is off after power up 
MESH_GENERIC_ON_POWER_UP_STATE_ON Light is on after power up 
MESH_GENERIC_ON_POWER_UP_STATE_RESTORE The state before light was powered down is restored at next power up 

The transition time model makes it possible to configure how long it takes for the light to transition from one state to another. 

The lightbulb_state struct in the Lighting Server contains the following fields. 

 
Struct Member Name Description Type 
onoff_current Current generic on/off value uint8_t 
onoff_target Target generic on/off value uint8_t 
transtime Transition time uint8_t 
onpowerup On Power Up value uint8_t 
lightness_current Current lightness value uint16_t 
lightness_target Target lightness value uint16_t 
lightness_last Last lightness value uint16_t 
lightness_default Default lightness value uint16_t 
lightness_min Minimum lightness value uint16_t 
lightness_max Maximum lightness value uint16_t 
pri_level_current Current primary generic level value int16_t 
pri_level_target Target primary generic level value int16_t 

The lightbulb_state struct in the Light CTL Server contains the following fields.  

 
Struct Member Name Description Type 
temperature_current Current temperature value uint16_t 
temperature_target Target temperature value uint16_t 
temperature_default Default temperature value uint16_t 
temperature_min Minimum temperature value uint16_t 
temperature_max Maximum temperature value uint16_t 
deltauv_current Current delta UV value int16_t 
deltauv_target Target delta UV value int16_t 
deltauv_default Default delta UV value int16_t 
sec_level_current Current secondary generic level value int16_t 
sec_level_target Target secondary generic level value int16_t 

The friend functionality is then initialized to enable the friend feature implemented in the stack. After successful initialization, friend re-
quests from Low Power Nodes can be accepted. The friend feature is mostly implemented in the stack, so after initialization only a few 
informative events can be raised to the application through corresponding callback functions: 



 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Lighting Demonstration 

 

silabs.com | Building a more connected world. Rev. 0.4  | 11 

• sl_btmesh_friend_on_friendship_established: a friendship was established. The application displays “FRIEND” on the 
WSTK LCD and/or in UART logs. 

• sl_btmesh_friend_on_friendship_terminated: the friendship was terminated. The application displays “NO LPN” on the 
WSTK LCD and/or in UART logs. 

The light node registers callback functions for each of the supported models. This is done by calling the mesh_lib_ge-
neric_server_register_handler() function. The function has five parameters: the model ID, the element index, the client request 
handler function, the server state change handler function, and the server state recall handler function. 

The light node registers handlers for the following models in the Lighting Server: 
• Generic OnOff Server 
• Generic PowerOnOff Server 
• Generic Default Transition Time Server 
• Light Lightness Server 
• Light Lightness Setup Server 
• Generic Level Server (on primary element) 

The light node registers handlers for the following models in the Light CTL Server: 
• Light CTL Server 
• Light CTL Setup Server 
• Light CTL Temperature Server (on secondary element) 
• Generic Level Server (on secondary element) 

On the server side, the mesh library works as follows. When any generic request from a client is received, the event 
sl_btmesh_evt_generic_server_client_request_id is raised. The application then calls the function mesh_lib_ge-
neric_server_event_handler from the mesh library and passes the event as the parameter. The mesh library decodes the model 
ID from the event and invokes the callback function that has been registered for that model.  

For example, in the light node, a Generic OnOff request will invoke the callback function onoff_request(). 

The onoff_request() function is called whenever an on/off request is received either from one of the switch nodes or from the 
smartphone app. This is the piece of code in the light node that turns lights on and off.  

If the request does not specify any transition time or delay, then the light state is changed immediately. Alternatively, the client may have 
requested a delay and/or a transition time, meaning that the transition does not happen instantly. In that case, the light node application 
starts a soft timer with the given delay. The light state is not changed until the soft timer expires. 

Light Lightness requests are handled in function lightness_request(). The lightness request includes a parameter of type uint16 
that indicates the light brightness on a scale of 0 – 65535. The example code uses pulse-width modulation (PWM) to drive the LEDs. The 
PWM is implemented using a 16-bit timer and the requested brightness value is directly mapped to the value of the Compare/Capture 
register of the timer. For example, the value 32768 will result in 32768/65536 ~ 50% brightness / PWM duty cycle. The duty cycle of the 
PWM signal is displayed on the LCD so that it is easy to compare the brightness that has been requested and the brightness that is 
currently set in the light node. 

The Generic OnOff state is bound with the Light Lightness state. This means that, if the light is turned off with an on/off request, the last 
brightness value is saved by the application and is recovered after the application receives an on/off request that turns the light on. If 
brightness is set to 0 using lightness request, the generic on/off state is set to OFF. If brightness is set to a positive value, the generic 
on/off state is set to ON. 

Brightness can be also changed using Generic Level requests handled in function pri_level_request(). The generic level request 
includes a parameter of type int16 that indicates brightness level. The conversion from level to lightness is made by adding 32768 to 
the level value. 

Light CTL requests are handled in function ctl_request(). The CTL request includes three parameters that indicate the light bright-
ness, color temperature, and delta UV. The first two parameters are of type uint16, and the third is of type int16. Actual color temper-
ature and delta UV are displayed on the WSTK LCD below the lightness. Color temperature is limited by spec to scale 800 – 20000 K. 
Limits can be changed by ctl_setup_request() with type of request set to ctl_temperature_range. Also the default values for CTL 
state could be changed using ctl_setup_request() with type of request set to ctl_default . 



 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Network Analyzer 

 

silabs.com | Building a more connected world. Rev. 0.4  | 12 

3 Network Analyzer 

Network Analyzer is a packet capture, decoder software, and visualization application and is part of Silicon Labs Simplicity Studio. Net-
work Analyzer has support for Bluetooth LE and Bluetooth mesh packet capture, and the latest version of Simplicity Studio also has 
decoders to decode the Bluetooth LE and mesh traffic. Refer to AN1317: Using Network Analyzer with Bluetooth® Low Energy and Mesh 
for more information. 

The EFR32 SoCs have a dedicated Packet Trace Interface (PTI), which outputs all the radio traffic sent and received by a specific EFR32 
device, and Network Analyzer can capture this traffic. On the EFR32, the PTI functionality can be enabled or disabled at the source-code 
level so it can be enabled during development and can then be disabled for production software. 

Silicon Labs Wireless Starter Kits (WSTKs) support PTI packet capture either over USB, which is useful for capturing packets from a few 
WSTKs at a time, or over an Ethernet connection. The Ethernet connection also provides access to PTI, and this functionality enables 
building and debugging a network of WSTKs and large-scale testing environments for Bluetooth mesh. 

The easiest way to start a Network Analyzer session for a specific device is to switch to the Network Analyzer tab, right-click on the 
device, select Connect, and select Start capture. 

 
Figure 3-1: Starting Silicon Labs Network Analyzer 

 

 

https://www.silabs.com/documents/public/application-notes/an1317-network-analyzer-with-bluetooth-mesh-le.pdf


 AN1299: Understanding the Silicon Labs Bluetooth Mesh SDK v2.x Lighting Demonstration 
 Bluetooth Mesh Stack and Application for Smartphones 

 

silabs.com | Building a more connected world. Rev. 0.4  | 13 

4 Bluetooth Mesh Stack and Application for Smartphones  

Silicon Labs also provides a Bluetooth mesh stack and a reference application for smartphones. The application can be used to provision 
mesh-capable Bluetooth devices as nodes that are part of a Bluetooth mesh network, as well as configure the nodes, set up groups, and 
the publish subscribe settings for nodes. At the time of writing this document, the application supports one physical network, multiple 
groups, and Lighting mesh models, but the application will be constantly updated for new features and functionality.  

As the smartphones at the time of writing this document do not natively support Bluetooth mesh, Silicon Labs also provides the Bluetooth 
mesh stack for the phones. The mesh stack is needed for the phone to be able to provision, configure, and control the Bluetooth mesh 
nodes over the GATT bearer. The figure below illustrates the architecture and the relationship between the Bluetooth stack on the phone 
operating system and the Silicon Labs Bluetooth mesh stack, as well as how the application relates to this. 

The Bluetooth mesh stack will be available as a binary library for phone application developers. A reference application implementing the 
Bluetooth mesh stack, provisioning, configuration, and device control is available on the Google Play and Apple App Stores. 

Contact your local Silicon Labs sales office for more information. 

 
Figure 4-1: Bluetooth Stacks and Application Architecture on Smartphones 

 



Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

www.silabs.com

IoT Portfolio
www.silabs.com/IoT

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support & Community
www.silabs.com/community

Simplicity Studio
One-click access to MCU and wireless 
tools, documentation, software, 
source code libraries & more. Available 
for Windows, Mac and Linux!

Disclaimer
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software imple-
menters using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each 
specific device, and “Typical” parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon 
Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the 
accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or 
reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the infor-
mation supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or 
authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent 
of Silicon Labs. A “Life Support System” is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in 
significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used 
in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims 
all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  

Trademark Information
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy 
Micro logo and combinations thereof, “the world’s most energy friendly microcontrollers”, Redpine Signals®, WiSeConnect , n-Link, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, 
Gecko OS, Gecko OS Studio, Precision32®, Simplicity Studio®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are 
trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered 
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


	1 Introduction
	1.1 Bluetooth Mesh

	2 Bluetooth Mesh Lighting Demonstration
	2.1 Requirements
	2.2 Mesh Network Implementation
	2.3 Code Walkthrough

	3 Network Analyzer
	4 Bluetooth Mesh Stack and Application for Smartphones 

